Главная
Поиск. Виджеты сервисов
Назад в раздел
Статьи по данной теме

Разделы

Основной блог Авторские статьи Аккредитация лабораторий Система менеджмента Техника лабораторных работ Лаборатория. Авторский блог Эксперты на связи
Условия использования
Политика конфиденциальности
Документация
ООО «Линко» © 2025
Дозаторы механические против пипеток
Дозаторы механические против пипеток

Дозаторы механические против пипеток

Сравнение преимуществ дозаторов механических и пипеток лабораторных


Практически каждая лаборатория, занимающаяся проведением химических или микробиологических исследований, сегодня пользуется дозаторами. Несмотря на то, что использование стеклянных пипеток все еще безоговорочно необходимо при работе с агрессивными жидкостями и растворителями, дозаторы прочно вошли в лабораторную практику. Их используют везде, где это позволяют условия эксплуатации: дозирование водных растворов, жидких реактивов и биологических жидкостей.

Тем не менее, многие сотрудники сталкиваются с проблемами при работе с дозаторами, иногда попросту боятся их использовать и предпочитают дозировать стеклянными пипетками. Разберемся со всем по порядку, проверим оправданность этих опасений и приведем рекомендации по повышению качества дозирования.

Сравнение дозаторов и стеклянных пипеток было решено провести по следующим параметрам:

В конце статьи мы огласим победителя в этом сравнении.

Область применения

И дозаторы и стеклянные пипетки могут одинаково успешно использоваться для дозирования водных растворов и биологических жидкостей. Однако есть области, где каждый тип имеет свои неоспоримые преимущества:

  • для дозирования агрессивных жидкостей и растворителей больше подходят стеклянные пипетки (в силу отсутствия элементов, подверженных коррозии);
  • для дозирования вязких жидкостей больше подходят откалиброванные для этого дозаторы;
  • для дозирования одновременно нескольких объемов подходят исключительно многоканальные дозаторы (широко применимо в иммунохимических и биологических исследованиях).

Следует отметить, что дозаторы отличаются большим разнообразием исполнений и могут использоваться в специфических целях, например, дозаторы прямого перемещения позволяют добиться более высокой точности и избежать перекрестного загрязнения при работе с вязкими жидкостями, жидкостями с высоким давлением пара, радиоактивными и агрессивными средами.

Дозаторы также выпускаются в виде дополнения к стеклянным пипеткам по аналогии с грушей (например, дозатор для серологических пипеток Macroman), что позволяет использовать преимущества обоих устройств дозирования.

Счет:

Дозаторы – 💧 💧 💧 💧

Пипетки – 💧 💧 💧

Вернуться к списку параметров

Удобство использования

При рассмотрении удобства использования на первое место однозначно выходят дозаторы:

  • дозаторы минимизируют по сравнению со стеклянными пипетками влияние пользователя на ход дозирования;
  • дозаторы не требуют использования вспомогательных инструментов для дозирования (резиновая трубка, груша, специальные контроллеры);
  • один дозатор переменного объема способен заменить несколько стеклянных пипеток разного объема;
  • при дозировании разных проб в целях избегания перекрестного загрязнения для дозатора достаточно менять наконечники (стеклянную пипетку пришлось бы заменить на аналогичную);
  • сменные стерильные наконечники позволяют исключить внесение какого-либо загрязнения в дозируемую жидкость;
  • для всех механических дозаторов действуют единые правила дозирования, в то время как стеклянные пипетки по ГОСТ 29227-91 выпускаются пяти типов, отличающихся по вымерению жидкости относительно отметок, времени ожидания и обращению с последней каплей в пипетке;
  • дозаторы более устойчивы к механическим повреждениям в отличии от хрупкого стекла и могут быть отремонтированы;
  • дозатор в ходе работы (если соблюдены правила эксплуатации) не загрязняется и по окончанию дозирования может быть размещен на штативе или любой подходящей для этого конструкции (стеклянные пипетки после дозирования необходимо размещать так, чтобы не вызвать загрязнения соприкасающихся поверхностей, а по окончанию работы их необходимо мыть).

Счет:

Дозаторы – 💧 💧 💧 💧 💧

Пипетки – 💧 💧 

Вернуться к списку параметров

Простота обслуживания

Дозаторы по сравнению с пипетками требуют более редкого, но более тщательного обслуживания: замены фильтров, чистки поршня, смазки и прочих рекомендуемых действий (Приложение 1).

Стеклянные пипетки необходимо ежедневно мыть после окончания работы. А в случае дозирования белковых растворов или иных жидкостей, оставляющих стойкое загрязнение, еще и замачивать (иногда с хромовой смесью). Однако, пипетки, предназначенные для постановки серологических реакций, не рекомендуется мыть с использованием кислот и щелочей, так как даже следовые количества этих веществ, оставшиеся на стенках, могут исказить результат реакций. Дополнительно пипетки, используемые при работе с ПБА, требуют специальной очистки и обеззараживания, в то время как дозаторы выпускаются в исполнениях, позволяющих их автоклавировать.

Все это существенно осложняет обслуживание стеклянных пипеток и по сложности может существенно превзойти редкое обслуживание дозаторов. Таким образом, можно заключить, что дозаторы требуют более простого обслуживания.

Счет:

Дозаторы – 💧 💧 💧 💧

Пипетки – 💧 💧 💧

Вернуться к списку параметров

Точность

Вклад погрешности дозирования в общую погрешность анализа очень высок. Погрешность дозирования, возникающая вследствие несоблюдения правил работы с дозирующим устройством, может в 9 раз превосходить погрешность самого устройства. В Интернете можно встретить множество противоречивых мнений о точности дозаторов, где не приводятся конкретные цифры и сравнение с характеристиками стеклянных пипеток. Мы сравнили пределы допускаемой абсолютной погрешности стеклянных пипеток объемом от 0,1 до 10 мл с аналогичными механическими дозаторами переменного объема.

В сравнении участвовали следующие дозаторы:

  • Sartorius Biohit Proline Plus;
  • Sartorius Biohit mLINE;
  • Eppendorf Reference 2;
  • Thermo Fisher Scientific Ленпипет Лайт;
  • Thermo Fisher Scientific Ленпипет Колор;
  • Thermo Fisher Scientific Ленпипет ДПА.

Эти модели были выбраны по причине их распространенности в отечественных лабораториях, ценовой доступности по сравнению с электронными дозаторами и практичности по сравнению с дозаторами прямого перемещения.

Примечание: в отличии от дозаторов прямого перемещения, где поршень всегда находится в прямом контакте с жидкостью образца, в рассматриваемых дозаторах дозирование происходит за счет изменения объема воздуха между дозируемой жидкостью и поршнем.

В качестве исходных данных для стеклянных пипеток использовались пределы допускаемой погрешности объема пипетки, приведеные в ГОСТ 29227-91 (ИСО 835-1-81) “Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования”, а для дозаторов – абсолютная систематическая погрешность измерения, приведенная в спецификации на данную модель дозаторов (случайная погрешность дозаторов не учитывалась, поскольку предел допускаемой погрешности объема пипетки, определяемый согласно ГОСТ 8.234-2013 “ГСИ. Меры вместимости стеклянные. Методика поверки”, соответствует систематической погрешности измерения объема пипетки и не учитывает случайную погрешность).

По результатам сравнения были построены графики зависимости пределов допускаемой абсолютной погрешности от величины дозируемого объема (рисунки 1 и 2).

Сравнение допускаемой абсолютной погрешности дозаторов и стеклянных пипеток 1 класса точности

Рис. 1. Сравнение допускаемой абсолютной погрешности дозаторов и стеклянных пипеток 1 класса точности

Сравнение допускаемой абсолютной погрешности дозаторов и стеклянных пипеток 2 класса точности

* - согласно ГОСТ 29227-91 пипетки 2 класса точности номинальной вместимостью 0,5 мл не выпускаются

Рис. 2. Сравнение допускаемой абсолютной погрешности дозаторов и стеклянных пипеток 2 класса точности

По графикам на рисунке 1 видно, что в диапазоне до 1 мл современные высокоточные дозаторы не уступают (Eppendorf) и даже превосходят (Sartorius Biohit) по точности аналоги среди стеклянных пипеток 1 класса точности. В диапазоне свыше 1 мл первое место по точности переходит от пипеток к дозаторам Sartorius Biohit в зависимости от величины дозируемого объема.

Дозаторы Thermo Fisher Scientific уступают стеклянным пипеткам 1 класса точности, но в диапазоне свыше 1 мл соответствуют пипеткам 2 класса точности (рисунок 2), которые уступают остальным дозаторам (Sartorius Biohit и Eppendorf).

Таким образом можно заключить, что современные механические дозаторы имеют разные характеристики по точности дозирования в отличии от нормированных ГОСТ 29227-91 градуированных стеклянных пипеток, но не уступают последним. Электронные дозаторы отличаются еще большей точностью и превосходят по точности стеклянные пипетки за счет автоматизации процесса дозирования и независимости от навыков пользователя.

Счет:

Дозаторы – 💧 💧 💧 💧

Пипетки – 💧 💧 💧

Однако, следует отметить, что высокая точность дозаторов обеспечивается их периодической проверкой. Проверка дозаторов является гарантией их соответствия метрологическим требованиям до наступления очередной поверки. Проверку рекомендуется проводить гравиметрическим методом с использованием весов, погрешность которых как минимум в три раза меньше погрешности дозаторов, не реже одного раза в 3-4 месяца, после настройки (калибровки) и проведения технического обслуживания. Частота проверок может быть увеличена в зависимости от конкретных требований, предъявляемых к точности дозирования в лаборатории. Общие рекомендации по проверке и настройке механических дозаторов приведены в Приложении 2.

Для количественной оценки точности дозаторов используется погрешность измерений, складывающаяся из двух составляющих: систематической и случайной (в спецификации производителя они часто указываются как точность (или inaccuracy) и воспроизводимость (или imprecision)). В идеале для полноты оценки необходимо контролировать обе составляющие погрешности дозирования, но на практике бывает достаточно одной – систематической, поскольку именно она вносит наибольший вклад, и влиянием случайной составляющей можно пренебречь, если она вдвое меньше систематической.

Полученные значения систематической погрешности измерений следует сравнивать с характеристиками, указанными в паспорте, спецификации или описании типа СИ дозатора (как правило, спецификация производителя предъявляет более высокие требования к точности дозаторов).

Пример формы для проверки дозаторов приведен в разделе "Материалы".

Вернуться к списку параметров

Стабильность

Если под стабильностью работы дозирующего устройства понимать такие его характеристики как точность и воспроизводимость (или допускаемое относительное отклонение среднего арифметического значения фактического объема дозы от номинального и допускаемое относительное среднеквадратическое отклонение фактического объема дозы), то для дозаторов эти параметры строго нормированы и подлежат поверке (в отличии от стеклянных пипеток, к которым периодическая поверка не применяется).

Если говорить о нестабильности в работе дозаторов такой, как сильные отклонения в дозируемом объеме, которые возникают при продолжительной работе, то подобные явления могут наблюдаться в случае несоблюдения правил работы с дозаторами и несвоевременным проведением технического обслуживания. Согласно имеющимся данным следующие факторы вносят вклад в ошибку дозирования:

  • неправильно надетый наконечник – не менее 0,4%;
  • отклонение от вертикальной оси при наборе жидкости – до 0,7%;
  • отсутствие предварительного смачивания наконечника – до 0,1%;
  • отклонение температуры образца и наконечника – до 0,2% на каждый градус разницы;
  • отклонение температуры воздуха в помещении от той, при которой проводилась калибровка, – до 0,4%;
  • нагрев дозатора рукой – до 0,1%;
  • не оптимальная глубина погружения наконечника в жидкость – до 0,4%.

Рекомендации по дозированию, призванные устранить вышеописанные факторы, приведены в Приложении 3.

Также к некорректным результатам дозирования может приводить загрязнение посадочного конуса дозатора, залипание поршня при его загрязнении и истощении смазки, износ уплотнительного кольца и поломка элементов в случае неосторожного обращения.

Перечень необходимого технического обслуживания механических дозаторов приведен в Приложении 1. Возможные неисправности и способы их устранения – в Приложении 4.

Что же касается работы со стеклянными пипетками, то здесь специалисты сходятся во мнении: точность дозирования очень сильно зависит от мастерства пользователя. В целом она не высока по причине постоянной необходимости доведения жидкости до метки и вытирания рисок с течением времени. Отвлекающие факторы, самочувствие, утомленность и другие причины могут повлиять на результат дозирования.

Для стеклянных пипеток характерен еще один недостаток: при хорошей смачиваемости стекла, после проведения дозирования, на внутренней поверхности может оставаться тонкая пленка жидкости, т.е. не весь объем жидкости выходит из трубки. Помимо этого, часть жидкости может скапливаться на носике пипетки в виде капли.

Счет:

Дозаторы – 💧 💧 💧 💧

Пипетки – 💧 💧 💧 💧


Вернуться к списку параметров

Заключение

Подводя итоги, мы видим, что дозаторы заслужено отвоевывают нишу дозирующих устройств в лабораторной практике:

Дозаторы – 💧 x 21

Пипетки – 💧 x 15

Однако следует помнить, что какими бы современными не были дозирующие устройства в вашей лаборатории, непрофессиональная работа пользователей и пренебрежение правилами дозирования могут свести к нулю работу на всех последующих этапах лабораторного процесса.

Вернуться к списку параметров

Приложение 1. Техническое обслуживание механических дозаторов


п/п
Наименование обслуживания Периодичность,
основание
Описание
1 Удаление пыли и прочего загрязнения с рабочих поверхностей По мере необходимости Протереть загрязненные поверхности салфеткой из мягкой безворсовой ткани, смоченной водой очищенной. При необходимости смочить салфетку 70% этиловым спиртом или мягким моющим средством. Вытереть дозатор насухо. Не использовать агрессивные моющие средства, растворители.
2 Чистка посадочного конуса Тугой сброс наконечника, неточное дозирование
3 Санитарная обработка По мере необходимости Протереть дозатор дезинфицирующим средством, например, 3 % раствором перекиси водорода или 70% раствором спирта. Удалить следы средства и протереть насухо.
4 Замена защитных фильтров 1 раз за 50-250 циклов дозирования, при попадании жидкости в фильтр или изменении его цвета Очистить посадочный конус. С помощью пинцета удалить загрязненный фильтр и установить новый.
5 Автоклавирование дозаторов и наконечников По мере необходимости Возможность автоклавирования для конкретной модели указана в руководстве по эксплуатации данного дозатора. Условия автоклавирования: 121 °С, 20 мин, 1 атм с последующим выдерживанием дозаторов при комнатной температуре в течение 2 ч и сушкой наконечников.
6 Чистка и смазка поршня Залипание поршня, неточное дозирование Для чистки и смазки поршня разобрать нижнюю часть дозатора, очистить и промыть поверхности сбрасывателя и нанести силиконовую смазку тонким слоем в соответствии с Инструкцией пользователя соответствующей модели дозатора.
7 Замена изнашиваемых частей (уплотнительного кольца, посадочного конуса и тд.) По мере необходимости Разобрать корпус дозатора в соответствии с Инструкцией пользователя соответствующей модели дозатора. При необходимости провести чистку и деконтаминацию внутренних поверхностей. Заменить необходимые элементы и собрать дозатор.

Приложение 2. Проверка и настройка (калибровка) дозаторов

Проверка

Проверку рекомендуется проводиться при температуре воздуха от 20 до 24 °С, влажности выше 50 % и при отсутствии сквозняков и вибраций. В качестве дозируемой жидкости использовать воду очищенную. Особенно важно поддерживать повышенную влажность воздуха при калибровке объемов менее 50 мкл.

Гравиметрическая проверка метрологических характеристик дозатора включает следующий порядок действий:

  • установить на дозаторе необходимый объем;
  • установить наконечник;
  • набрать и сбросить воду 5 раз для выравнивания влажности внутри воздушного пространства дозатора;
  • сменить наконечник;
  • смочить наконечник, заполнив его водой 1 раз;
  • произвести дозирование согласно рекомендациям в Приложении, сливая воду в емкость для взвешивания;
  • снять показания весов;
  • повторить цикл взвешивания 10 раз;
  • преобразовать полученные массы воды в объем, используя поправочный Z-коэффициент (значения коэффициента Z приведены в ГОСТ 8.234-2013, Приложение A);
  • рассчитать среднее значение набираемого объема, интересующую метрологическую характеристику (например, систематическую погрешность измерения) и сравнить с характеристиками в спецификации дозатора (или описании типа СИ).

В случае получения отрицательного результата в ходе проверки (превышение допустимых значений погрешности) провести настройку (калибровку) дозатора.

Настройка

Процедура настройки дозаторов заключается в изменении фактического значения дозируемого объема при неизменном объеме, отображенном на индикаторе объема. Условия проведения настройки аналогичны условиям проведения проверки.

В общем виде процедура настройки выглядит следующим образом:

  • использовать калибровочный ключ, поворот которого по часовой стрелке увеличивает фактический объем, а против часовой стрелки – уменьшает;
  • проверить точностные характеристики дозатора (например, систематическую ошибку измерения);
  • повторять настройку, пока не будет достигнут удовлетворительный результат.

При работе с жидкостями, физические свойства которых значительно отличаются от свойств воды, желательно провести перенастройку с использованием другого значения Z коэффициента (Z коэффициент равен обратному значению плотности жидкости при заданном давлении и температуре). При этом дозатор будет корректно дозировать только установленный объем, для которого проводилась перенастройка.


Приложение 3. Рекомендации при работе с механическими дозаторами

1. Плотно устанавливать сменный наконечник на посадочный конус.

2. При установке объема дозирования плунжер поворачивать до щелчка.

3. Выравнивать температуру наконечников, дозатора и дозируемой жидкости.

4. При наборе жидкости держать дозатор вертикально, а наконечник погружать в дозируемую жидкость не более чем на несколько мм.

Дозируемый объем, мкл Рекомендуемая глубина погружения наконечника, мм
0,1 - 1 1
1 - 100 2 - 3
101 - 1000 2 - 4
1001 - 10000 3 - 6

5. Медленно и плавно нажимать и отпускать плунжер.

6. Смачивать сменный наконечник перед началом дозирования (особенно важно для жидкостей с плотностью больше плотности воды, вязких жидкостей и веществ, склонных к интенсивному испарению).

7. Проводить дозирование параллельных образцов аналогичным образом.

8. Сменять наконечники после каждой операции дозирования при работе с жидкостями, имеющими температуру, отличную от температуры окружающей среды.

9. Всегда пользоваться сбрасывателем наконечника и не допускать загрязнения рук образцами или попадания загрязнения с рук в образцы.

10. Не оставлять дозатор с жидкостью в наконечнике в горизонтальном положении. Когда дозатор не используется – размещать его на специальных штативах и стойках для хранения.


Приложение 4. Возможные неисправности при работе с механическими дозаторами и способы их устранения

Неисправность Причина Рекомендации
Утечка Наконечник установлен неплотно Плотно установить наконечник
Наконечник вышел из строя Заменить наконечник
Пыль или посторонние частицы между наконечником и посадочным конусом Очистить конус и установить новый наконечник
Пыль или посторонние частицы между поршнем, прокладкой и цилиндром Очистить и смазать поршень, прокладку и цилиндр
Цилиндр и прокладка плохо смазаны Смазать цилиндр и прокладку согласно Инструкции пользователя на соответствующий дозатор
Повреждено уплотнительное кольцо Заменить кольцо
Неточное дозирование Неправильная работа дозатором Внимательно следовать инструкции по эксплуатации дозатора
Неправильно установлен наконечник Плотно установить наконечник
Нарушение калибровки, например, из-за небрежного обращения с дозатором Повторить калибровку в соответствии с инструкцией по эксплуатации дозатора
Неточное дозирование с некоторыми жидкостями Неподходящая калибровка. Работа с вязкими жидкостями требует перекалибровки Перекалибровать дозатор под используемую жидкость
Библиография

1.  ГОСТ 8.234-2013 "Государственная система обеспечения единства измерений (ГСИ). Меры вместимости стеклянные. Методика поверки".
2.  ГОСТ 28311-89 "Дозаторы медицинские лабораторные. Общие технические требования и методы испытаний".
3.  ГОСТ 29227-91 (ИСО 835-1-81) "Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования".
4.  Анализ погрешностей дозирования и способы их минимизации; Павлов С.Б., Кумечко М.В., Черных Л.В., Бабенко Н.М.; Клиническая лабораторная диагностика, №2, 2013.
5.  Рекомендации по работе с механическими и электронными дозаторами (редакция 2.0); ООО "Биохит".
6.  Инструкции пользователя дозаторов Sartorius Proline pipette, Sartorius Proline Plus pipette, Sartorius mLINE pipette.
7.  Руководство по эксплуатации Eppendorf Reference 2.
8.  Руководства по эксплуатации дозаторов Лайт, Колор и ДПА.


9 июня 2020 г. 20:42

 3,9 К    1,9 К

Реклама

Общество с ограниченной ответственностью "Линко", ИНН 7203563403, ERID: 2VtzqxFhmzm

Почта Линко

Отправитель: Общество с ограниченной ответственностью "Линко"

ГОСТ ISO/IEC 17025-2019. Интерактивный курс

  • 32 интерактивных занятия по всем основным темам.
  • Разработка Руководства по качеству и процедур в ходе курса.
  • Лекционная часть материалов включена в занятия.

Доступен c 9 июня 2025 г.

Подробнее

Изменения в документах

Расширен перечень сведений, обязательных к передаче в ФСА. Изменения к Приказу МЭР 704

Опубликован Приказ Минэкономразвития РФ № 730 от 20.11.2024. В отношении аккредитованных испытательных лабораторий дополнительно к сведениям, указанным в пункте 1 Положения о составе сведений, представляемых аккредитованными лицами в ФСА, необходимо предоставлять следующие сведения ...


Новая версия методических рекомендаций СМ № 04.1-4.0009 вступила в силу

Калибровочные лаборатории могут руководствоваться документом при подготовке к процедуре аккредитации, РОА, подтверждения компетентности аккредитованного лица. Новая версия рекомендаций — 05.1 от 3 февраля 2025 г. опубликована на официальном сайте Росаккредитации. Документ вводится в действие c 17 февраля 2025 г.


Протокол испытаний: как правильно оформить документ по ГОСТу

Рассмотрим оформление протоколов испытаний в соответствии с требованиями законодательства. Особое внимание уделим положениям ГОСТ ISO/IEC 17025-2019 и ГОСТ Р 58973-2020. Подробно разберем каждый пункт этих требований и дадим рекомендации, как правильно оформить протоколы испытаний, чтобы избежать проблем на проверках.

Познакомиться со статьей

Семинары серии «Весенняя капель»

Примите участие во всех встречах весеннего цикла.

Работа с рисками и возможностями

2 ак.ч

Работа с рисками и возможностями Записаться

Записи. Результаты. Данные и информация

5 ак.ч

Записи. Результаты. Данные Записаться

Ключевые правила расчета сроков на ПК-1-2-5

1 ак.ч

Ключевые правила расчета сроков на ПК-1-2-5 Записаться

ГОСТ 17025: персонал, конфиденциальность, беспристрастность и помещения

2 ак.ч

ГОСТ 17025: персонал, конфиденциальность, беспристрастность, информация и помещения Записаться

Новая политика ФСА. Области технической компетенции

1 ак.ч

Новая политика ФСА. Области технической компетенции Записаться

Требования к структуре. Практикум

6 ак.ч

Требования к структуре. Практикум Записаться

Интерактивный модуль «Процессный подход в лаборатории» возвращается

Успейте записаться первыми на новый семинар-практикум от Линко

Интерактивные карточки

Помогут лучше осовоить материал и интересно провести время.

Семинар-практикум

Строим подробнейшую схему всего процесса "Управление документами и записями".

Перейти к модулю

Актуальные темы

Применение мозгового штурма в лаборатории

Мозговой штурм — это метод, который используется для стимулирования группы людей к разработке идей. Может сопровождать все этапы процесса управления рисками (идентификацию, анализ источников, факторов риска, анализ и оценку риска и его обработку).


Метод Дельфи в лаборатории: как эксперты помогают принять верное решение

Один из групповых методов экспертных оценок, который позволяет обобщить в одно мнение оценки многих специалистов. Метод Дельфи применяется для прогнозирования развития событий. Может эффективно применяться для оценки рисков.


Открытая разработка документов - 2025

Открытая разработка документов Новая версия РК выходит 1 марта

Проект поможет в разработке своего руководства. Элитный документ, проверенный и усиленный в юридических вопросах. Более объективный продукт нового поколения. Новая СМ от Линко, не имеющая аналогов.

 
Подробнее об ОРД-25 и ОРД-Эксперт

Линко Практикум

Могут принять участие 2‑10 сотрудников Вашей лаборатории или можете участвовать сами.


Небольшая лекция позволит вспомнить материал или получить новые знания. Работайте в группе с преподавателем в формате практики, чтобы закрепить теоретический материал и лучше понять его применение в реальных ситуациях.


Беспристрастность и конфиденциальность. Практикум по ГОСТ ISO/IEC 17025-2019

Доступен 12 мая 2025 г.

6 ак.ч

При обнаружении риска для беспристрастности лаборатория должна быть в состоянии продемонстрировать то, как она устраняет или минимизирует такой риск.

Подать заявку

Требования к структуре. Практикум по ГОСТ ISO/IEC 17025-2019

Доступен 26 мая 2025 г.

6 ак.ч

Лаборатория должна определить управленческую структуру и взаимосвязи между службами, установить полномочия всех сотрудников, документировать свои процедуры, демонстрировать, как она минимизирует соответствующие риски.

Подать заявку

Требования к ресурсам. Персонал. Практикум по ГОСТ ISO/IEC 17025-2019

Доступен 2 июня 2025 г.

6 ак.ч

Персонал должен работать в соответствии с системой менеджмента. Необходимо документировать требования к компетентности, гарантировать, что персонал обладает компетентностью для выполнения деятельности и для оценки значимости отклонений.

Подать заявку

Выберите любую тему для участия

Выбрать Практикум

Органолептический анализ в лаборатории. Требования к помещениям и условиям окружающей среды

Расскажем о требованиях законодательства к проведению органолептических испытаний, проектированию лабораторных помещений, контролируемым параметрам окружающей среды и освещённости. Обратим внимание на стандарты и руководства, которые необходимо соблюдать при проведении органолептических испытаний.

Познакомиться со статьей

Новые нормативы и стандарты

Введены новые стандарты для испытательных лабораторий. Легкая промышленность

Производство продукции лёгкой промышленности охватывает широкий ассортимент товаров. Перед тем как одежда, обувь и трикотаж попадут к конечному потребителю, они должны пройти ряд испытаний и проверок. Мы подготовили подборку последних стандартов для лабораторий, играющих важную роль в обеспечении качества и безопасности такой продукции.


На обсуждении новые нормативы качества воды и ПДК в водных объектах

Новый приказ заменит действующий в настоящее время приказ Министерства сельского хозяйства РФ от 13 декабря 2016 г. № 552. В случае принятия вступит в силу 1 сентября 2025 года. Из перечня нормативов исключается ряд загрязняющих веществ, добавляется нефтеокисляющий микробный препарат «Океанида».


Курсы и семинары. Весна 2025

Контроль качества результатов измерений (анализа). Нормативные документы и требования к контролю качества анализа на основании ГОСТ Р ИСО 5725-2002

9 - 10 апреля 2025 г.

16 ак.ч

Что Вы узнаете:

Планирование, проведение ВЛК, оценка приемлемости результатов анализа, примеры расчета погрешности методики, документирование, сопоставление результатов испытаний двух лабораторий, проведение анализа МСИ.

Для кого:

Руководители лабораторий, менеджеры по качеству и испытатели.

Записаться

Оценка неопределенности результатов измерений в испытательной лаборатории

11 апреля 2025 г.

5 ак.ч

Что Вы узнаете:

Ответы на теоретические и практические вопросы оценки неопределенности результатов измерений, включая отличия неопределенности от погрешности, виды, методы оценивания, источники, примеры расчета неопределенности.

Цель семинара:

Избавить слушателей от невольного страха перед «Великим и ужасным Гудвином» – неопределенностью измерений.

Записаться

Оценивание неопределенности измерений с учетом неопределенности пробоотбора

11 апреля 2025 г.

3 ак.ч

Что Вы узнаете:

Зачем рассчитывать неопределенность при отборе проб и как это сделать; термины и определения; подходы к оцениванию неопределенности отбора проб; источники неопределенности; алгоритм оценки неопределенности при отборе проб.

Вы научитесь:

Рассчитывать неопределенности при отборе проб, принимать решения по результатам проведения отбора проб.

Записаться

Оценка неопределенности результатов измерений и отбора проб в испытательной лаборатории

11 апреля 2025 г.

8 ак.ч

Что Вы узнаете:

Ответы на теоретические и практические вопросы оценки неопределенности, включая отличия неопределенности от погрешности, виды, методы оценивания, источники, примеры расчета неопределенности.

Цель семинара:

Избавить слушателей от невольного страха перед «Великим и ужасным Гудвином» – неопределенностью измерений.

Записаться

Метрологическая прослеживаемость лабораторий

24 - 25 апреля 2025 г.

16 ак.ч

Что Вы узнаете:

Принципы метрологической прослеживаемости, международную систему величин и единиц, основные действия при установлении прослеживаемости.

Вы научитесь:

Выбирать и применять подходящие эталоны, обобщать опыт обеспечения единства измерений, применять разъяснения и рекомендации по требованиям ГОСТ ISO/IEC 17025-2019.

Записаться

Управление записями в испытательной лаборатории

29 - 30 апреля 2025 г.

16 ак.ч

Будут рассмотрены:

Требования ГОСТ ISO/IEC 17025-2019 и Критериев аккредитации, предъявляемые к ведению записей в испытательной лаборатории, варианты обеспечения лабораторией соответствия данным требованиям.

Вы научитесь:

Формировать и вести лабораторные записи в соответствии с требованиями, применять правила управления, в том числе внесения изменений, резервного и архивного хранения записей.

Записаться

Внедрение методик (методов) измерений в Испытательной лаборатории (верификация и валидация методик)

16 мая 9:00 мск

8 ак.ч

Будут рассмотрены:

Вопросы внедрения методик в деятельность испытательной лаборатории в соответствии с требованиями ГОСТ ISO/IEC 17025-2019.

Что разберем:

Валидация и чем она отличается от верификации, что делать, если нужно валидировать методику, с чего начать, конкретные примеры, ответы на вопросы.

Записаться

Подготовка лаборатории к подтверждению компетентности, аккредитации

28 - 30 мая 2025 г.

24 ак.ч

Что вы узнаете:

Как подготовить лабораторию к прохождению процедуры аккредитации или подтверждения компетентности (ПК) в национальной системе аккредитации, какие документы разработать, сформировать, кому, когда предоставить?

Особенность:

Полный комплект знаний для успешной подготовки к аккредитации и ПК в НСА оценят менеджеры по качеству, специалисты и руководители ИЛ.

Записаться

При обучении на курсах Вы получите
удостоверение о ПК

Удостоверение о повышении квалификации является государственным документом, имеет юридическую силу и подтверждает факт успешного обучения по выбранной программе.

Лицензия № Л035-01215-72/00958262 подтверждает право вести образовательную деятельность.

Отправить заявку очень просто: сделайте это в один клик с платформы или напишите на почту: info@linco.spb.ru

Чат. Линко Форум. Лаборатории

Наш Телеграм чат для Лабораторий. Тысячи специалистов общаются вместе, задают вопросы и получают ответы. Множество рубрик, материалов, документов и ценных ссылок. Богатый источник данных. Этот инструмент подойдет Вам.

Присоединиться

Весенние семинарские дни

 

9,91 балла
Учебный центр Линко получил 717 оценок и отзывов за год

Первые Практикумы

ГОСТ ISO/IEC 17025-2019

Общие требования к компетентности испытательных и калибровочных лабораторий

Выберите любую тему для участия

Выбрать Практикум

Подробные статьи

Пройдите простую регистрацию, чтобы получить доступ к материалам.

Регистрация Вход

Центр информации

Поддержка пользователей, быстрая обратная связь по работе сервисов Линко.

Написать