Главная
Поиск. Виджеты сервисов
Назад в раздел
Статьи по данной теме

Разделы

Основной блог Авторские статьи Аккредитация лабораторий Система менеджмента Техника лабораторных работ Лаборатория. Авторский блог Эксперты на связи
Условия использования
Политика конфиденциальности
Документация
ООО «Линко» © 2025
Качественный и количественный анализ в лабораторной практике
Качественный и количественный анализ в лабораторной практике

Качественный и количественный анализ в лабораторной практике

При определении состава вещества сначала устанавливают качественный состав (из чего состоит объект), а затем приступают к определению количественного (узнают количественные соотношения обнаруженных составных компонентов).


Содержание

Качественный анализ вещества
Классификация методов количественного анализа
Химические методы количественного анализа

Качественный анализ вещества

Качественный и количественный анализ являются предметом аналитической химии. Определение состава веществ включает выявление природы компонентов, из которых состоит исследуемое вещество, и установление количественных соотношений этих компонентов.

Сначала устанавливают качественный состав исследуемого объекта, т.е. решают вопрос, из чего он состоит, а затем приступают к определению количественного состава, т.е. узнают, в каких количественных соотношениях обнаруженные составные части находятся в объекте исследования.

Качественный анализ вещества можно проводить химическими, физическими, физико-химическими методами.

Химические методы анализа основаны на применении характерных химических реакций для установления состава анализируемого вещества.

Химический анализ вещества проводят двумя способами: «сухим путем» или «мокрым путем».

Анализ сухим путем – это химические реакции, происходящие с веществами при накаливании, сплавлении и окрашивании пламени.

Анализ мокрым способом – это химические реакции, протекающие в растворах электролитов. Анализируемое вещество предварительно растворяют в воде или других растворителях. В зависимости от массы или объема взятого для анализа вещества, от применяемой техники различают макро-, полумикро- и микрометоды.

Макрометод. Для проведения анализа берут 1—2 мл раствора, содержащего не менее 0,1 г вещества, и добавляют не менее 1 мл раствора реактива. Реакции проводят в пробирке, осадок отделяют фильтрованием. Осадок на фильтре промывают от примесей.

Полумикрометод. Для анализа берут в 10—20 раз меньше вещества (до 0,01 г). Так как в этом методе работают с малыми количествами вещества, то пользуются микропробирками, часовыми или предметными стеклами. Для отделения осадка от раствора применяют центрифугирование.

Микрометод. При выполнении анализа данным методом берут одну-две капли раствора, а сухого вещества – в пределах 0,001 г. Характерные реакции проводят на часовом стекле или фарфоровой пластинке.

При проведении анализа пользуются следующими операциями: нагревание и выпаривание, осаждение, центрифугирование, проверка полноты осаждения, отделение раствора (центрифуга) от осадка, промывание и растворение осадка.

Для определения количественного состава вещества или продукта используются реакции нейтрализации, осаждения, окисления и восстановления, комплексообразования. Количество вещества можно определить по его массе или объему раствора, затраченного на взаимодействие с ним, а также по показателю преломления раствора, его электрической проводимости или интенсивности окраски и т. п.

По количеству взятого для исследования вещества аналитические методы количественного анализа классифицируются следующим образом:

  • макроанализ (1—10 г твердого вещества, 10—100 мл анализируемого раствора);
  • полумикроанализ (0,05—0,5 г твердого вещества, 1—10 мл анализируемого раствора);
  • микроанализ (1×10-4—0,001 г твердого вещества, 1×10-4—0,1 мл анализируемого раствора).

В товароведной практике часто пользуются гравиметрическим (весовым) и титриметрическим (объемным) методами.

Вернуться к содержанию

Классификация методов количественного анализа

Количественный анализ – совокупность химических, физико-химических и физических методов определения количественного соотношения компонентов, входящих в состав анализируемого вещества.

Количественный анализ позволяет установить:

1. Количественные соотношения составных частей неизвестного индивидуального соединения, т.е. установить его формулу.

2. Содержание или концентрацию определяемого вещества в исследуемом образце.

3. Содержание всех или некоторых главных компонентов анализируемой смеси.

4. Содержание определенных форм того или иного элемента.

5. Содержание не главных компонентов смеси.

6. Содержание микропримесей в особо чистых веществах.

7. Содержание определенных радикалов, активных атомов, функциональных групп вещества.

8. Состав отдельных фаз смеси.

По количеству вещества, взятого для анализа, различают макро-, полумикро-, микро- и ультрамикрометоды количественного анализа.

В зависимости от объекта исследования различают неорганический и органический количественный анализ. Органический количественный анализ подразделяется на элементный, функциональный и молекулярный анализ.

Элементный анализ позволяет установить содержание элементов (ионов).

Функциональный анализ — содержание функциональных (реакционноспособных) атомов и групп в анализируемом объекте.

Молекулярный количественный анализ предусматривает анализ индивидуальных химических соединений, характеризующихся определенной молекулярной массой.

Важное значение имеет фазовый анализ – совокупность методов разделения и анализа отдельных структурных (фазовых) составляющих гетерогенных систем.

Методами количественного анализа проверяют правильность технологических процессов, решают многие вопросы исследований прикладного характера: оценивают содержание ценных веществ в рудах, биологических объектах, присутствие токсических веществ в продуктах питания, окружающей среде и т. д.

Важная характеристика методов количественного анализа – точность, то есть, значение относительной ошибки определения. Точность и чувствительность в количественном анализе выражают в процентах.

Точность химических методов количественного анализа находится обычно в пределах 0,005—0,1%; ошибки определения инструментальными методами составляют 5—10%, а иногда и значительно больше.

Чтобы результаты количественного анализа были верны, необходимо соблюдать ряд условий:

  • подбор подходящей аналитической реакции или физического свойства вещества;
  • правильное выполнение всех аналитических процедур;
  • применение достаточно надежных способов измерения результатов анализа.

Процедура анализа состоит из трех основных этапов:

  • отбор образца, типичного для объекта исследования;
  • подготовка образца к анализу;
  • инструментальный анализ.

Каждый из этапов должен выполняться с помощью наиболее подходящего метода, который должен быть выбран в соответствии с техническими регламентами с одной стороны по аналитическим соображениям, а с другой стороны – по соображениям экономичности. Разнообразие матриц и ширина спектра исследуемых веществ привели к появлению множества методов.

Измерительные методы базируются на информации, получаемой с использованием средств измерений и контроля. В основе всех методов анализа лежит измерение либо химического, либо физического свойства вещества, называемого аналитическим сигналом, зависящего от природы вещества и его содержания в пробе.

В зависимости от принципа получения аналитического сигнала все методы аналитической химии делятся на 3 основные группы:

1. Химические методы анализа основаны на использовании химических реакций. При этом проводят реакцию, а затем наблюдают аналитический эффект или измеряют аналитический сигнал. В качестве аналитического сигнала в химических методах выступает либо масса вещества (гравиметрический метод анализа), либо объем реактива – титранта (титриметрические методы). Химические методы применяют для определения состава и количества входящих в продукцию веществ. Они подразделяются на количественные и качественные – это методы аналитической, органической, физической и биологической химии.

2. Биологические методы анализа основаны на измерении интенсивности развития микроорганизмов в зависимости от количества анализируемого вещества. Биологические методы используют для определения пищевой и биологической ценности продукции. Их подразделяют на физиологические и микробиологические. Физиологические применяют для установления степени усвоения и переваривания питательных веществ, безвредности, биологической ценности. Микробиологические методы применяют для определения степени обсемененности продукции различными микроорганизмами.

3. Физические (физико-химические) методы анализа основаны на измерении физических свойств веществ, зависящих от химического состава. Физические методы – методы, при реализации которых регистрируется аналитический сигнал каких-либо физических свойств (ядерные, спектральные, оптические) без проведения химической реакции. При этом наблюдение аналитического эффекта или измерение аналитического сигнала выполняют непосредственно с анализируемым веществом. Химические реакции либо совсем не проводят, либо они играют вспомогательную роль. Основной упор делают на измерение аналитического сигнала. Физические методы применяют для определения физических свойств – коэффициента рефракции, вязкости, липкости и др. К таким методам относятся микроскопия, поляриметрия, колориметрия, рефрактометрия, спектроскопия, реология, люминесцентный анализ и другие. Также, с помощью физических методов определяют относительную плотность и удельную массу, температуру плавления и затвердевания, концентрацию водородных ионов, показатель преломления света, механическую устойчивость и прочность, эластичность и пористость, наличие примесей и другие показатели. Физико-химические методы анализа, как и химические методы, основаны на проведении той или иной химической реакции и измерении физических свойств веществ, которые появляются или изменяются в результате химических реакций. В физических методах химические реакции отсутствуют или имеют второстепенное значение, хотя в спектральном анализе интенсивность линий всегда существенно зависит от химических реакций в угольном электроде или в газовом пламени. Поэтому иногда физические методы включают в группу физико-химических методов, так как достаточно строгого однозначного различия между физическими и физико-химическими методами нет, и выделение физических методов в отдельную группу не имеет принципиального значения.

Физико-химические методы анализа основаны на регистрации аналитического сигнала какого-то физического свойства (потенциала, тока, количества электричества, интенсивности излучения света или его поглощения и т. д.) при проведении химической реакции. При этом сначала проводят реакцию, а затем измеряют физическое свойство продукта реакции или используют измерение физического свойства в ходе реакции для установления конечной точки титрования.

Химические методы анализа иначе называют классическими, а физические и физико-химические методы анализа – инструментальными, т. к. проведение анализа с привлечением этих методов невозможно без использования измерительной аппаратуры.

Вернуться к содержанию

Химические методы количественного анализа

Химические методы анализа предусматривают химическое взаимодействие веществ. Здесь важны результаты химической реакции между веществом и реагентом. Химические методы анализа широко применяются для проведения качественного анализа, так как по характеру осадка, изменению окраски раствора, образованию и выделению определенного газа можно установить, какое вещество имеется в растворе. При количественном химическом анализе производят взвешивание образовавшегося осадка, добавляют раствор реактива до изменения цвета раствора или другой физической характеристики вещества и по количеству использованного на анализ реактива определяют количество анализируемого вещества.

К классическим химическим методам количественного анализа относятся:

1. Гравиметрический анализ, основанный на определении измерения массы анализируемого вещества или его составных частей, выделяемых в химически чистом состоянии или в виде соответствующих соединений.

2. Объёмный анализ.

Различают следующие виды объёмного метода анализа:

1) титриметрический количественный анализ – измерение объёма израсходованного на реакцию реактива точно известной концентрации;

2) газовый объёмный количественный анализ – анализ газовых смесей, основанный на избирательном поглощении из анализируемой газовой смеси определяемого компонента подходящими поглотителями;

3) седиментационный объёмный количественный анализ – основан на расслоении дисперсных систем под действием силы тяжести, сопровождающемся отделением дисперсной фазы в виде осадка и последующем измерении объёма осадка в градуированной центрифужной пробирке. Основными достоинствами химических методов анализа являются простота выполнения и достаточно высокая точность (0,10…0,01%).

К недостаткам химических методов анализа относятся большая продолжительность и высокий предел обнаружения.

Вернуться к содержанию

Ссылка на источник

1 сентября 2021 г. 11:18

 11,6 К    3,2 К

Реклама

Общество с ограниченной ответственностью "Линко", ИНН 7203563403, ERID: 2VtzqxFhmzm

Почта Линко

Отправитель: Общество с ограниченной ответственностью "Линко"

ГОСТ ISO/IEC 17025-2019. Интерактивный курс

  • 32 интерактивных занятия по всем основным темам.
  • Разработка Руководства по качеству и процедур в ходе курса.
  • Лекционная часть материалов включена в занятия.

Доступен c 9 июня 2025 г.

Подробнее

Изменения в документах

Расширен перечень сведений, обязательных к передаче в ФСА. Изменения к Приказу МЭР 704

Опубликован Приказ Минэкономразвития РФ № 730 от 20.11.2024. В отношении аккредитованных испытательных лабораторий дополнительно к сведениям, указанным в пункте 1 Положения о составе сведений, представляемых аккредитованными лицами в ФСА, необходимо предоставлять следующие сведения ...


Новая версия методических рекомендаций СМ № 04.1-4.0009 вступила в силу

Калибровочные лаборатории могут руководствоваться документом при подготовке к процедуре аккредитации, РОА, подтверждения компетентности аккредитованного лица. Новая версия рекомендаций — 05.1 от 3 февраля 2025 г. опубликована на официальном сайте Росаккредитации. Документ вводится в действие c 17 февраля 2025 г.


Протокол испытаний: как правильно оформить документ по ГОСТу

Рассмотрим оформление протоколов испытаний в соответствии с требованиями законодательства. Особое внимание уделим положениям ГОСТ ISO/IEC 17025-2019 и ГОСТ Р 58973-2020. Подробно разберем каждый пункт этих требований и дадим рекомендации, как правильно оформить протоколы испытаний, чтобы избежать проблем на проверках.

Познакомиться со статьей

Семинары серии «Весенняя капель»

Примите участие во всех встречах весеннего цикла.

Работа с рисками и возможностями

2 ак.ч

Работа с рисками и возможностями Записаться

Записи. Результаты. Данные и информация

5 ак.ч

Записи. Результаты. Данные Записаться

Ключевые правила расчета сроков на ПК-1-2-5

1 ак.ч

Ключевые правила расчета сроков на ПК-1-2-5 Записаться

ГОСТ 17025: персонал, конфиденциальность, беспристрастность и помещения

2 ак.ч

ГОСТ 17025: персонал, конфиденциальность, беспристрастность, информация и помещения Записаться

Новая политика ФСА. Области технической компетенции

1 ак.ч

Новая политика ФСА. Области технической компетенции Записаться

Требования к структуре. Практикум

6 ак.ч

Требования к структуре. Практикум Записаться

Интерактивный модуль «Процессный подход в лаборатории» возвращается

Успейте записаться первыми на новый семинар-практикум от Линко

Интерактивные карточки

Помогут лучше осовоить материал и интересно провести время.

Семинар-практикум

Строим подробнейшую схему всего процесса "Управление документами и записями".

Перейти к модулю

Актуальные темы

Применение мозгового штурма в лаборатории

Мозговой штурм — это метод, который используется для стимулирования группы людей к разработке идей. Может сопровождать все этапы процесса управления рисками (идентификацию, анализ источников, факторов риска, анализ и оценку риска и его обработку).


Метод Дельфи в лаборатории: как эксперты помогают принять верное решение

Один из групповых методов экспертных оценок, который позволяет обобщить в одно мнение оценки многих специалистов. Метод Дельфи применяется для прогнозирования развития событий. Может эффективно применяться для оценки рисков.


Открытая разработка документов - 2025

Открытая разработка документов Новая версия РК выходит 1 марта

Проект поможет в разработке своего руководства. Элитный документ, проверенный и усиленный в юридических вопросах. Более объективный продукт нового поколения. Новая СМ от Линко, не имеющая аналогов.

 
Подробнее об ОРД-25 и ОРД-Эксперт

Линко Практикум

Могут принять участие 2‑10 сотрудников Вашей лаборатории или можете участвовать сами.


Небольшая лекция позволит вспомнить материал или получить новые знания. Работайте в группе с преподавателем в формате практики, чтобы закрепить теоретический материал и лучше понять его применение в реальных ситуациях.


Беспристрастность и конфиденциальность. Практикум по ГОСТ ISO/IEC 17025-2019

Доступен 12 мая 2025 г.

6 ак.ч

При обнаружении риска для беспристрастности лаборатория должна быть в состоянии продемонстрировать то, как она устраняет или минимизирует такой риск.

Подать заявку

Требования к структуре. Практикум по ГОСТ ISO/IEC 17025-2019

Доступен 26 мая 2025 г.

6 ак.ч

Лаборатория должна определить управленческую структуру и взаимосвязи между службами, установить полномочия всех сотрудников, документировать свои процедуры, демонстрировать, как она минимизирует соответствующие риски.

Подать заявку

Требования к ресурсам. Персонал. Практикум по ГОСТ ISO/IEC 17025-2019

Доступен 2 июня 2025 г.

6 ак.ч

Персонал должен работать в соответствии с системой менеджмента. Необходимо документировать требования к компетентности, гарантировать, что персонал обладает компетентностью для выполнения деятельности и для оценки значимости отклонений.

Подать заявку

Выберите любую тему для участия

Выбрать Практикум

Органолептический анализ в лаборатории. Требования к помещениям и условиям окружающей среды

Расскажем о требованиях законодательства к проведению органолептических испытаний, проектированию лабораторных помещений, контролируемым параметрам окружающей среды и освещённости. Обратим внимание на стандарты и руководства, которые необходимо соблюдать при проведении органолептических испытаний.

Познакомиться со статьей

Новые нормативы и стандарты

Введены новые стандарты для испытательных лабораторий. Легкая промышленность

Производство продукции лёгкой промышленности охватывает широкий ассортимент товаров. Перед тем как одежда, обувь и трикотаж попадут к конечному потребителю, они должны пройти ряд испытаний и проверок. Мы подготовили подборку последних стандартов для лабораторий, играющих важную роль в обеспечении качества и безопасности такой продукции.


На обсуждении новые нормативы качества воды и ПДК в водных объектах

Новый приказ заменит действующий в настоящее время приказ Министерства сельского хозяйства РФ от 13 декабря 2016 г. № 552. В случае принятия вступит в силу 1 сентября 2025 года. Из перечня нормативов исключается ряд загрязняющих веществ, добавляется нефтеокисляющий микробный препарат «Океанида».


Курсы и семинары. Весна 2025

Контроль качества результатов измерений (анализа). Нормативные документы и требования к контролю качества анализа на основании ГОСТ Р ИСО 5725-2002

9 - 10 апреля 2025 г.

16 ак.ч

Что Вы узнаете:

Планирование, проведение ВЛК, оценка приемлемости результатов анализа, примеры расчета погрешности методики, документирование, сопоставление результатов испытаний двух лабораторий, проведение анализа МСИ.

Для кого:

Руководители лабораторий, менеджеры по качеству и испытатели.

Записаться

Оценка неопределенности результатов измерений в испытательной лаборатории

11 апреля 2025 г.

5 ак.ч

Что Вы узнаете:

Ответы на теоретические и практические вопросы оценки неопределенности результатов измерений, включая отличия неопределенности от погрешности, виды, методы оценивания, источники, примеры расчета неопределенности.

Цель семинара:

Избавить слушателей от невольного страха перед «Великим и ужасным Гудвином» – неопределенностью измерений.

Записаться

Оценивание неопределенности измерений с учетом неопределенности пробоотбора

11 апреля 2025 г.

3 ак.ч

Что Вы узнаете:

Зачем рассчитывать неопределенность при отборе проб и как это сделать; термины и определения; подходы к оцениванию неопределенности отбора проб; источники неопределенности; алгоритм оценки неопределенности при отборе проб.

Вы научитесь:

Рассчитывать неопределенности при отборе проб, принимать решения по результатам проведения отбора проб.

Записаться

Оценка неопределенности результатов измерений и отбора проб в испытательной лаборатории

11 апреля 2025 г.

8 ак.ч

Что Вы узнаете:

Ответы на теоретические и практические вопросы оценки неопределенности, включая отличия неопределенности от погрешности, виды, методы оценивания, источники, примеры расчета неопределенности.

Цель семинара:

Избавить слушателей от невольного страха перед «Великим и ужасным Гудвином» – неопределенностью измерений.

Записаться

Метрологическая прослеживаемость лабораторий

24 - 25 апреля 2025 г.

16 ак.ч

Что Вы узнаете:

Принципы метрологической прослеживаемости, международную систему величин и единиц, основные действия при установлении прослеживаемости.

Вы научитесь:

Выбирать и применять подходящие эталоны, обобщать опыт обеспечения единства измерений, применять разъяснения и рекомендации по требованиям ГОСТ ISO/IEC 17025-2019.

Записаться

Управление записями в испытательной лаборатории

29 - 30 апреля 2025 г.

16 ак.ч

Будут рассмотрены:

Требования ГОСТ ISO/IEC 17025-2019 и Критериев аккредитации, предъявляемые к ведению записей в испытательной лаборатории, варианты обеспечения лабораторией соответствия данным требованиям.

Вы научитесь:

Формировать и вести лабораторные записи в соответствии с требованиями, применять правила управления, в том числе внесения изменений, резервного и архивного хранения записей.

Записаться

Внедрение методик (методов) измерений в Испытательной лаборатории (верификация и валидация методик)

16 мая 9:00 мск

8 ак.ч

Будут рассмотрены:

Вопросы внедрения методик в деятельность испытательной лаборатории в соответствии с требованиями ГОСТ ISO/IEC 17025-2019.

Что разберем:

Валидация и чем она отличается от верификации, что делать, если нужно валидировать методику, с чего начать, конкретные примеры, ответы на вопросы.

Записаться

Подготовка лаборатории к подтверждению компетентности, аккредитации

28 - 30 мая 2025 г.

24 ак.ч

Что вы узнаете:

Как подготовить лабораторию к прохождению процедуры аккредитации или подтверждения компетентности (ПК) в национальной системе аккредитации, какие документы разработать, сформировать, кому, когда предоставить?

Особенность:

Полный комплект знаний для успешной подготовки к аккредитации и ПК в НСА оценят менеджеры по качеству, специалисты и руководители ИЛ.

Записаться

При обучении на курсах Вы получите
удостоверение о ПК

Удостоверение о повышении квалификации является государственным документом, имеет юридическую силу и подтверждает факт успешного обучения по выбранной программе.

Лицензия № Л035-01215-72/00958262 подтверждает право вести образовательную деятельность.

Отправить заявку очень просто: сделайте это в один клик с платформы или напишите на почту: info@linco.spb.ru

Чат. Линко Форум. Лаборатории

Наш Телеграм чат для Лабораторий. Тысячи специалистов общаются вместе, задают вопросы и получают ответы. Множество рубрик, материалов, документов и ценных ссылок. Богатый источник данных. Этот инструмент подойдет Вам.

Присоединиться

Весенние семинарские дни

 

9,91 балла
Учебный центр Линко получил 717 оценок и отзывов за год

Первые Практикумы

ГОСТ ISO/IEC 17025-2019

Общие требования к компетентности испытательных и калибровочных лабораторий

Выберите любую тему для участия

Выбрать Практикум

Подробные статьи

Пройдите простую регистрацию, чтобы получить доступ к материалам.

Регистрация Вход

Центр информации

Поддержка пользователей, быстрая обратная связь по работе сервисов Линко.

Написать